top of page

Adaptive evolution of Escherichia coli for  sucrose consumption under anaerobic conditions

​

  • Experimental evolution protocols to enhance sucrose metabolization and to establish novel sucrose uptake pathways under                 anaerobic conditions                                                                                                                                       

  • Adaptive laboratory experiments  to enhance tolerance to osmotic stress and fermentation inhibitors                                                             

  • Metabolic engineering of polyhydroxyalkanoates biosynthesis and production under anaerobic conditions                                                                   

  • Development of the CRISPR/Cas9 tools for Escherichia coli                                           

  • Flow Cytometry phenotyping of E. coli strains                                         

​

Escherichia coli

GESTÃO DE DADOS

E_edited_edited_edited_edited_edited.jpg

PROJECT SUMMARY 

​

Adaptive Laboratory Evolution (ALE) is a powerful tool to shape microorganisms for industrial applications. This project aims at using ALE for optimizing Escherichia coli to growth under anaerobic conditions and to use sucrose as a carbon source. For these purposes, E. coli strains will be first engineered with the csc genes (cscB, cscK, cscA), for uptake of sucrose, and with the gene sucP, for sucrose phosphorolysis. Genetically modified strains will be then challenged (ALE approach) to propagate under anaerobic conditions and to consume increasing amounts of sucrose from synthetic medium. Mutations that accumulated during ALE will be discovered by next-generation sequencing of the genomes and then reverse engineered into the parental strains. The resulting strains will be further submitted to ALE for propagation in sugarcane-derived molasses and juices. Finally, strains that were optimized for anaerobic growth on sucrose will be subjected to metabolic engineering for polyhydroxyalkanoates (PHAs) synthesis, resulting in ideal strains for bioplastic production from sugarcane feedstock.

PROJECT PIs

Jonas.jpg

Prof. Jonas Contiero

Principal Investigator 

P1060160.JPG

Dr. Jeferson Gross

C0-Principal Investigator

RELATED PROJECTS

Fernanda.jpg

Dr. Fernanda B. Andrade

Post-doctoral fellowship

IMG-20190222-WA0039.jpg

Joneclei A. Barreto

Ph.D. scholarship

bottom of page